If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-615x-81000=0
a = 1; b = -615; c = -81000;
Δ = b2-4ac
Δ = -6152-4·1·(-81000)
Δ = 702225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{702225}=\sqrt{225*3121}=\sqrt{225}*\sqrt{3121}=15\sqrt{3121}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-615)-15\sqrt{3121}}{2*1}=\frac{615-15\sqrt{3121}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-615)+15\sqrt{3121}}{2*1}=\frac{615+15\sqrt{3121}}{2} $
| x+4/14=5/7+x-5/3 | | x3+(x+88)=180 | | 3(i-5)=-45 | | 6+2(4x+3)-5x=3 | | -20=10x-2x | | x+51+89+x+59=180 | | 5(3y+4)=-4(6–4y) | | 12=x⋅3 | | (4x+11)/5=-5 | | (5x-1)+(14x-4)=180 | | 2+10a=-8 | | (3s-5)/8=1/2 | | 9w-5=39 | | (7r+1)/5=10 | | 6-x3=3 | | 8(y+10)–30=5y | | -3(r+9=-59 | | (8x+9)+27=180 | | -9x-10=10x-9 | | 3.14159265359/7=a/4 | | 32+10x=90 | | 2-5(3x-4)+7=104 | | x+8x+2+70+60=180 | | x+(x-3)=36 | | 5=d/5 | | n/3=-1/45 | | x=1+1/3+1 | | q=1752+q | | 7.5=x1.25 | | 30+6x=-6 | | -(2N=n-8)=-2 | | 5=2.25^{2x} |